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Abstract: Competition has been introduced in the last decade into the electricity 
markets and is presently underway in many countries. A centralized approach 
for the dispatching of the generation units has been substituted by a market 
approach based on the biddings submitted by the supply side and, eventually, by 
the demand side. Each producer is a player in the market acting to maximize its 
utility. The decision making process of the producers and their interactions in 
the market are a typical complex problem that is difficult to model explicitly, 
and can be studied with a multi agents approach. This paper proposes a model 
able to capture the decision making approach of the producers in submitting 
strategic biddings to the market and simulate the market outcomes resulting 
from those interactions. The model is based on the Watkins’s Q(λ) 
Reinforcement Learning and takes into account the network constraints that 
may pose considerable limitations to the electricity markets. The model can be 
used to define the optimal bidding strategy for each producer and, as well, to 
find the market equilibrium and assessing the market performances. The model 
proposed is applied to a standard IEEE 14-bus test system to illustrate its 
effectiveness. 

Key words—Multi agents, Optimal Bidding Strategy, Watkins’s Q(λ) 
Reinforcement Learning.  
 

I. INTRODUCTION 
 

The electricity industry throughout the world, which has 
long been dominated by the vertically integrated utilities, is 
undergoing enormous changes. In the new competitive markets, 
in most cases, a centrally operated pool [1-2], with a power 
exchange has been introduced to meet the offers from the 
competing suppliers (electricity producers) with the bids of the 
customers (loads). In this framework, the maximization of the 
profit is a major concern for the producers as individual market 
participants. A wide literature has been concentrated on this 
research area. Based on the traditional optimization theory, 
Webber and Overbye [3] presented a two-level optimization 
problem in which the producers try to maximize their surplus 
based on  the market clearing dispatch  represented  by an 
optimal power flow model. In [4] are developed stochastic 
optimization formulation and two approaches are proposed for 
building optimal biddings. Due to the strategic interactions 
among the participants in the competitive electricity markets, 
game theory is used to provide market models [5] [6].  Based on 
the game theory, [7] - [12] investigated the strategic interactions 
among players who are aware that their results are affected by 
the decisions of the other players in the market. The object of a 
game is to find the Nash Equilibrium (NE). The general 
approach for finding NE  is to solve, iteratively for each player, 
a large scale nonlinear optimization problem that incorporate 
the market clearing model in the producer surplus maximization 
problem using the classic of KKT conditions. When no change 
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in terms of each producer’s optimal strategy can be selected, the 
NE has been found. However, due to the peculiarities of the 
electricity markets in which the transactions need to be 
undertaken over a grid that poses strict physical and operational 
constraints [2], the problem of the existence/uniqueness of the 
NE is a major concern, even for simple models such as single 
trading round and complete information [7][9],[13-16]. If we 
consider, in addition, the multiple trading rounds or incomplete 
information between the players, the optimal strategic bidding 
problem can be characterized as a complex problem which is 
almost intractable from an analytical point of view.  

Given the specificity of the environment we want to study, 
the computational approaches using autonomous intelligent 
agents are a viable way to model the competitive electricity 
markets. Richter and Sheble [17] developed a single population 
Genetic Algorithm to evolve agents’ bidding strategies for a 
multi rounds auction market. A co-evolutionary approach has 
been introduced in [18] to study the dynamic behaviors of 
participants over many trading intervals.  In the intelligent 
agents approach, we describe all the external factors, that 
include the network physical operation states, the competitors 
production costs, capacity limits and bidding strategies, as an 
“environment” that may affect the market outcomes and can not 
be known precisely by the market participants. In such 
“environment” many agents act to maximize their surplus by 
exploring the potential bidding actions and exploiting the 
experiences obtained from past bids. An efficient and novel   
approach for defining the optimal bidding strategy of each 
player on the basis of the past experience is provided by the 
Reinforcement Learning (RL) [19-21].  

In this paper we propose a model for building the optimal 
bidding strategy of the producers in the electricity market, over 
the medium run, using the Watkins’s Q(λ) RL algorithm that 
can capture the progressive learning of each producers in the 
successive interactions with the unknown environment.  

This paper is organized as follow. In section II some of the 
basic backgrounds about RL are introduced. Section III 
describes the market clearing problem under network 
constraints and the strategic biddings of the supply side while 
section IV is devoted to the application of the Watkins’s Q(λ) 
RL algorithm to the optimal bidding strategies. The application 
of the model to a simple test system is presented in section V, 
while in section VI some conclusions are drawn.  
 

II. BACKGROUND ON REINFORCEMENT LEARNING (RL) 
 

The agent's goal is to maximize the total reward that 
represents the utility it gets from the market and is measured by 
the producer surplus over the long run [22]. We assume that the 
decision  making process can be considered as a Markov 
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Decision Problems (MDP) in which the decisions can be 
assumed based only on the current state that is able to retain all 
the relevant past information. The RL approaches specify how 
the agent changes its decision policy as a result of its 
experiences; the agent interacts with the environment at each of 
a sequence of discrete time steps t, senses the environment state 
st and, on that basis, selects an action at. One time step later, as 
a consequence of the selected action, the agent receives a 
reward, rt+1, and finds itself in a new state, st+1. In this context a 
mapping from states and actions to the probability of choosing 
an action a at the state s is called a policy π(s,a). 

Two value functions are the core of the RL approaches: the 
state value function Vπ(s) and the state-action value function 
Qπ(s,a), under policy π . They can be expressed as:  
  
Vπ(s)=Eπ{Rt|st = s}=Eπ{∑k=0→+∞ (γk rt+k+1) |st =s}  
                             
                              =∑aπ(s,a) ∑s′Pa

ss′ 
 [Ra

ss′ + γVπ(s′)] (1) 
 
Qπ(s,a)= Eπ{Rt|st = s, at = a}= Eπ{∑k=0→+∞ (γk rt+k+1)|st =s, at =a}  
                                             
                                            = ∑s′Pa

ss′ 
 [Ra

ss′ + γVπ(s′)] (2) 
 
where the expression Rt=∑k=0→+∞ (γk rt+k+1)  represents  the 
expected discounted rewards,  γ is the discount rate (0≤ γ <1), 
π(s,a) is the decision policy, Pa

ss′ is the probability of transition 
to each possible next state s′ given any current state s and action 
a,  Ra

ss´ = E{rt+1|st=s, at=a, st+1=s´} is the expression of  the 
expected value of the next reward given any current state s and 
action a, together with any next state s´. 

The optimal policy, π*, is defined with the optimal state value 
function, Vπ*(s) or optimal state-action value function Q*(s,a): 
 
Vπ*(s) = maxπ Vπ(s)= maxa∈ A(s)∑s′Pa

ss′ 
 [Ra

ss′ + γVπ*(s′)] (3) 
 
Qπ*(s)=maxπ Qπ(s,a) = ∑s′ Pa

ss′ 
 [Ra

ss′
 + γmaxa′∈ A(s′) Qπ*(s′,a′ )]  

 (4) 
 
where π* is the optimal policy and A(s) is the set of possible 
actions at state s. 

The above two formulas are the well known Bellman 
optimality equations. If we know the model of the environment, 
the reward and the next state probability distribution, we can 
use policy evaluation and policy improvement iteration method 
to solve the above MDP to get the Vπ* or Qπ* [22]. However, in 
most cases, as the one considered in this paper, we do not know 
the environment model in detail, especially in the multi agents 
learning environment, in which the actions that other agents 
will take at the current state are unknown to each agent. The 
actions of the competing agents will certainly affect the next 
environment state that all the agents will encounter. Temporal 
Difference (TD) learning provides an efficient way to solve this 
kind of MDPs in which the agent can learn directly from the 
experience without a model of the environment's dynamics. The 
simplest TD update approach, known as TD (0), is: 
 
Vt+1(st) = Vt(st) + βtδt (5) 
 
where δt =rt+1 + γVt(st+1) – Vt(st) is the TD error.  

For any fixed policy π, the TD (0) method has been proven 
to converge to the true value Vπ(s)  under the condition that 
every state is visited an infinite number of times and the 
learning rate, βt, is suitably chosen. TD(0) is a 1-step TD 

backward approach, since only one next reward rt+1 is counted 
and it uses the next state value  Vt(st+1) as a proxy for the 
remaining future rewards. A more general method is the n-step 
backwards obtained by replacing rt+1 with the sum of the 
discounted rewards of the following n steps and Vt(st+1) with the 
n following state, Vt(st+n), which is assured to provide an 
improved approximation of the value function as the number of 
time-steps increases [22]. TD (λ) algorithm can be seen as a 
particularly way of averaging n-step backward, based on the 
backward view of the TD(λ) [22].  The update rule of the state 
value is: 
 
Vt+1(s) = Vt(s) + β δt et(s), for all Ss ∈  (6) 
 
In (6), et(s) is named eligible trace and can be expressed as: 





=+
≠

=
−

−

tt

tt
t ssifse

ssifse
se

1)(
)(

)(
1

1

γλ
γλ

  

where λ is the trace-decay parameter (0≤λ≤1) that allows for 
weighting the frequency with which the states have been 
encountered. If the state is temporally more distant the 
frequency is less affected because its eligible trace is smaller 
while if the state is encountered again the frequency will be 
affected more and, hence, will be more likely to cause changes 
due to the learning process.  

A basic issue is to assess the impacts on the future expected 
rewards of different actions at at the state st. In this respect, the 
state-action value function Qπ(s,a)  is more relevant. Q-learning 
(Watkins, 1989) is a breakthrough in reinforcement learning 
developed from TD(0) control algorithm to find  an optimal 
policy. The updating rule is: 
 
Qt+1(st,at) = Qt(st,at)+ β [rt+1 + γmaxa′ Qt(st+1, a′ ) – Qt(st,at)]  (9) 
 
Qt has been shown to converge with probability one to Q* 
[20][22]. Furthermore, Watkins’s Q(λ) algorithm is suitable for 
finding an optimal state-action value that combines TD(λ) and 
Q-learning. In choosing the action at a given state, the agent can 
follow different policies. In the so-called ε-greedy policy the 
agent chooses the action that maximizes its reward in the 
present state with probability (1-ε) and randomly selects an 
action with probability ε. The term greedy is used to describe 
any search or decision procedure that selects action based only 
on local or immediate consideration without considering the 
possibility that such a selection may prevent, in the future, to 
access better alternatives. The ε parameter can be properly set to 
balance the exploitation of the knowledge at the present state 
and the exploration of new and non-greedy actions. In table I is 
illustrated the algorithm of Watkins’s Q(λ) RL method [22]. 
 

Table.I  The algorithm of Watkins’s Q(λ) RL method 
Initialize Q(s,a) and e(s,a)=0, for all s,a 
For each episode, reset to  the starting state  
   for each time step, take action under current state st, observe rt+1 and st+1 
    choose at+1 from st+1 using ε-greedy policy 
   a* ←argmaxa′ Qt(st+1,a′ ), If there is more than one action that brings the  same 
   optimal value, randomly chose the action from the optimal action set 
   δt  = rt+1 + γQt(st+1,a*) – Qt(st,at); et(st,at)= et(st,at)+1 
   for  all s,a 
   Qt+1(s,a) = Qt(s,a) +  βt δt et(st,at) 
   if   at+1= a*  then et+1(s,a) = γλet(s,a)  else et+1(s,a)=0 
   st = st+1, at = at+1 
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III. MARKET CLEARING MODEL 
 

 In the pool market model, for a given trading hour, the 
Independent System Operator (ISO) takes the responsibility to 
coordinate the submitted offers, in terms of supply and demand 
curves, with the objective to maximize the system surplus∗, 
taking into account the network constraints to make the system 
feasible.  

Let’s assume that at each bus we have just one generator; the 
generator at bus g∈ G ={1, …, g ,…, G}  is characterized by a 
linear marginal cost curve expressed by: 
 
ρg  = αg  + βg  pg              G∈∀g  (10) 
where pg is the energy produced (MWh),   ρg  is the price 
($/MWh) while  αg  ($/MWh ) and βg ($/MWh2) are parameters 
depending on the generator.   

The producers (generators) will submit to the ISO offers 
higher than their marginal costs with the goal of maximizing 
their individual surpluses over a specified medium term 
time-frame. In our model we consider the same trading hour for 
all the days in one month. With the reference to the literature, 
[10-11] [14], we assume that the offer submitted by each 
producer g for a day t as: 
 
ogt = agt(αg + βg

 pgt) TG, ∈∀∈∀ tg  (11) 
 
where T = {1, 2,…, 31} is the set of the days of the considered 
month  and  agt  is the decision variable (action) for generator g 
at day t . For each day of T and for each generator g the set of 
decision variables, agt ∈Agt (Appendix, Table A-I), defines a set 
of linear offer curves. 

The demand curve for load d in the trading day t is: 
 
ρdt = fd ( qdt – Dd t

max) TD, ∈∀∈∀ td  (12) 
 
where fd  <0, ($/MWh2), d ∈ D ={1,…, d ,…, D}, is the value of 
the slope, qdt  is the energy demanded (MWh) and Ddt

max  is the 
maximum energy demanded of the load d in the considered hour 
of day  t, related to the current level of electric appliances and 
device, assumed as fixed in the simulation.  

The system hourly dispatch, in centralized pool model [1-2], 
can be formulated, within a DC model of the network, as: 
 
max  SS=∑d (-fd Dd

max qd + ½ fd  qd
2 )–∑g ag (αg pg + ½ βg  pg

2) (13)               
 
s.t.     h(p, q , θ ) = 0  ↔   ν    (14) 
 

g(p, q , θ)  ≤ 0               (15) 
 
where SS is the system surplus, p and q are respectively the 
generation and load vector, θ is the vector of bus voltage angles. 
The equalities set, (14), represent the power balance at each 
bus. The associated Lagrange multiplier vector, ν, provides the 
nodal prices. The set of inequalities, (15), is referred to the 
operational constraints, including line flow limits and capacity 
limits of the generators. 
       After the hourly market clearing, the producer gets the 
information about the power dispatched pgt and the nodal price 
 

∗ Social surplus needs to be computed on the basis of the aggregate marginal 
cost and benefit curves. Since in the market no player is obliged to reveal the 
costs, the actual social surplus may not be computed and, instead of it, a system 
surplus may be defined on the basis of the offers and bids submitted. 

νgt at its bus. The surplus of producer g gives the reward rgt and 
can be expressed as: 
 
rgt = νgt pgt – αg pgt – ½ βg (pgt)2 (16) 
 

IV. SIMULATION MODEL FOR THE MEDIUM-TERM BIDDING 
STRATEGY IN ELECTRICITY MARKET BASED ON RL  

 
 In the context of the RL approach, the producers (agents) in 
the electricity market interact with the environment 
successively by sensing the current market state and select 
action based on that state and its past learning experiences. The 
environment responds to those actions and presents new market 
states to the agents. The structure of the multi agents RL, based 
on the Watkins’s Q(λ) approach, is illustrated  in Fig.1. 

 
For each producer, the market state is given by the nodal 

price at the connecting bus. Since the nodal prices may be 
different due to the network constraints, the market state space 
is different for each producer under the considered hourly 
market clearing dispatch. The state space is a discrete set and 
should cover all the possible nodal prices under the market 
hourly clearing in one month. For the agent g, the state 
identification is a map from the vgt to the state space set Sg. 

The learning rate βt is defined to be inversely proportional to 
the number of times for which the state –action is encountered, 
T(st,at), as:  
 
βt = 1 ⁄ T(st,at) (17) 
  

The goal of the agent is to find, by using RL algorithm,  an 
optimal policy to choose an action at  any encountered market 
state, for the considered trading hour, in repeated trading days,  
with the objective of maximizing its surplus over one month. 
For a particularly trading hour, each agent will choose an 
action, represented by the value of  agt , in (11) ,  to define  its 
bidding curve submitted to the trading pool for the hourly 
dispatch, based on the current available market state and its 
Q-table. The Q-table is derived from the repeated running of the 
one month trading simulation for many episodes in which the 
expected rewards that takes into account the future learning 
consequences, in (9), are memorized.  

With the evolving of the learning episodes, the Q-table 
converges to the optimal Q-table. The usefulness of optimal 
Q-table is that if it is used to evaluate the short-term 
consequences of actions, the greedy policy is actually an 
optimal one in the long-term because the optimal Q-table 

already takes into account the reward consequences of all 
possible future behaviors. By means of the optimal Q-table, the 

vt+1

p1t+1 

 
 
 
                                                                       

Hourly Trading Pool 
(for one month) 

state identificationchoose action

Q-table eligible trace

reinforcement learning for agent 1 

reinforcement learning for agent G 

a1t 

aGt

surplus computation

st+1 st

rgt

reinforcement learning for agent g 

Fig 1. Multi agents RL structure 

pgt+1 pG t+1 

agt 

vg,t+1 

vg,t+1 
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optimal expected long-term reward is turned into a value that is 
locally and immediately available for each state. Hence, the 
greedy search policy yields to the long-term optimal policy.  
 

V SIMULATION CASE 
 

We use the IEEE 14-bus test system to illustrate the building 
mechanism of the optimal strategic biddings for producers 
under RL framework in the competitive market in which 
network constraints are considered. The marginal cost 
parameters of the producers and the loads information are 
presented in the appendix table A-I and A-II.  Furthermore, we 
assume that the maximal demand of the load d in the considered 
hour of the trading day t, Ddt

max, would have the same profile as 
the real time load of the PJM pool over one month, August, 
2004(Fig.2) but are scaled to our simulation case with small 
magnitude value. See the appendix table A-II for the maximal 
demand at the load bus 10 in one month, hour 11-12.   

 

  
The simulation is run for a particular trading hour, peak load 

hour 11am-12am over one month for many episodes and can be 
applied to other trading hours within a day, without changes, to 
build the optimal action policy for the agents in each hour of 
successive trading days over one month.  

Two examples of the Q-table of the state-action values after 
100 learning episodes and 200 episodes are illustrated in table II 
and III, where the numbers in bold font are the optimal 
state-action value with which the action associated is the 
optimal strategy that the agent will take under the current state. 
   

Table II The Q-Table of state–action pairs of agent 1 (after 100 episodes) 
(Multi-agent learning with parameters λ=0.8, ε=γ=0.1, hour 11) 

 Action  index  
State 1 … 5 … 10 … 13 14 … 17 18 19 20 

… …… 
2 4202.6 … 0 … 0 … 0 7903 … 0 0 12053 11029
3 4118.3 … 0 … 0 … 0 0 … 0 0 0 11156
4 0 … 6072.6 … 0 … 0 0 … 0 10400 0 0 
… …… 
11 4131.3 … 0 … 0 …9523.7 8926.3 … 9951 10629 9011.8 10801
12 4320.3 … 5912.3 …7568.7 …8683.6 10101 … 9866.5 10329 0 9279.2
13 4267.5 … 5963.4 … 0 … 0 8523.5 … 10375 9211 10377 10369
… …… 

 
 
 

       

Table III  The Q-Table of state–action pairs of agent 1 (after 200 episodes) 
(Multi-agent learning with parameters λ=0.8, ε=γ=0.1, hour 11) 

 Action  index 
State 1 … 5 … 10 … 13 14 … 17 18 19 20 
… …… 
2 5047.8… 0 … 0 …9815.5 9091.2 … 0 0 12028 11042
3 5213.3… 0 … 0 … 0 0 … 0 0 0 11239
4 0 …6072.6… 0 … 0 0 … 0 10926 0 0 

… …… 
11 4131.3… 6137 … 0 …9388.3 8926.3 … 9951 10544 9011.8 10579
12 4353.4…5971.8…8009.1 8708.9 10037 …9891.8 10349 0 10133
13 4327.1…5998.2…8461.2…9768.5 8757.2 … 10326 9263.6 10521 10327
… …… 

 
If the agent uses the Q-table at current episode as the 

optimal Q-table to choose the action for real market bidding, the 
episode surplus value, Sg

E, is:  

Sg
E

 = ∑
=

31

1t
gtr |Q-Table G∈∀g                               (18)  

 Since the network transmission constraints may happen to 
induce different nodal prices, the weighted average price may 
be assumed as a reference price from the whole market 
performance point of view: 














+














+= ∑ ∑∑ ∑

∈ ∈∈ ∈ G DG D g d
dtgt

g d
dtdtgtgtt qpqp ννν     (19) 

Where the vdt is the nodal price at load bus d. 
The monthly average market price (MAMP), v , is assumed to 
be: 

v = ( ∑
=

31

1t
tν )/31|Q-Table (20) 

First, we consider the single agent RL problem in which 
only the producer 1 uses the RL algorithm whereas other 
producers always offer their marginal cost curves over the 
simulation period. The episode surplus value, S1

E, is derived 
from the greedy policy that implies to choose the action that 
bring the largest expected return, using the current learning 
Q-table as the optimal Q-table. As a reference case, the upper 
dashed line in Fig.3 gives the maximal producer surplus value 
in a month by choosing the optimal actions in each trading day 
which are derived from numerical test and trial through 
successive market clearings, as shown in table III.  The optimal 
actions in each trading day yields the maximal total producer 
surplus, 145990$, in one month.  

Under RL framework, the S1
E of the episode 1 is actually 

derived by random policy from initial Q-table in which no 
information is available to guide the selection of an action. 
From episode 2, the optimal Q-table begins to evolve with the 
improvement of the S1

E.The S1
E is close to the optimal value, 

$144460, with fast response   during the evolving process since 
other producers are assumed to offer their marginal cost curves.  

The monthly average market price value, v , is affected only 
by the learning behavior of the considered agent. Under RL 
framework the, v , is not changed much during the whole 
learning episodes, between around 116$/MW and 117$/MW, as 
shown in Fig. 4. 

 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
4

4.5

5

5.5

6

6.5

7
x 10

4

Fig. 2 August 2004 Hour 11-12, PJM, Real Time Load [23]
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Second, we consider the multi agents RL problem in which 

each producer will employ the RL algorithm to seek its own 
optimal policy. Compared with the single agent learning case 
the multi agents learning process is a complexity framework in 
which the “environment” is affected by all the agents’ strategic 
behaviors. 

From Fig.5, we can see that in multi agents learning context, 
all the learning agents will increase their Sg

E as the Q-Tables 
evolved through the learning episodes. From about the episode 
150, the whole interactive system is almost stabilized; each 
agent will have a fix optimal action selection policy which 
brings a stable expected medium term reward at around 
$305140, $149130, $138970, $415940, $119060 for producer 1 
to 5 respectively. That suggests to some extent that the 
interactions of these adaptive agents will lead to the market 
equilibrium for a medium term, which is an important issue to 
be studied. Compared with single agent learning program, the 
S1

E is increased about $160680 due do the possible high nodal 
prices, from around $144460 in single agent learning context to 
around $305140  in multi agents learning context under the 
same network and demand parameters.   

The monthly average market price, v , under multi agents 
context (Fig.6) has an increased profile, from about 125$/MW 
to about 136$/MW, while the v  under single agent context is 
varied only in a very narrow band, from 116$/MW to 
117$/MW. Furthermore, in multi agent learning context, the v  
is stabilized at around 136 $/MW that is higher than the v   in 
the single agent learning context, around 117$/MW, which may 
shed some lights on the high level of market power in the multi 
agents context. 

  

 
 

VI CONCLUSION 
 

Due to the incomplete information between the competitors 
and the peculiarities of the electricity markets, the optimal 
bidding strategy for a market participant, especially when 
considering a multi trading framework, is difficult to be 
determined by traditional analytical methods. Based on the 
Watkins’s Q(λ) Reinforcement Learning  method, this paper 
proposed an efficient approach to develop optimal policy for 
electricity producers, which does not require explicit 
representation of the mathematic model to solve the producer 
surplus maximization with network constraints. 

The modeling of the electricity market in a multi agents 
framework is able to capture the behavior of the market 
participants and provide a forecast of the market equilibrium 
and producer surplus. 

 From the simulation results, in the single agent learning 
context, the action policy converges to the optimal policy with 
fast response and the market average price does not change 
much, while in the multi agents learning context, due to higher 
level of the market power and network constraints, the producer 
may get higher surplus than in the case of the single agent 
learning context. Furthermore, the interactions of multi 
adaptive agents will lead to stable market equilibrium over a 
specified trading period. 
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APPENDIX  
 

Table A- I The parameters of electricity producers 
No. 
g bus  Pg

max MWh Pg
min MWh αg  $/MWh βg $/MWh2 Agt †

1 1 250 0 15 0.08 1:0.05:2
2 2 200 0 18 0.1 1:0.05:2
3 3 200 0 20 0.1 1:0.05:2
4 6 200 0 22 0.12 1:0.05:2
5 8 250 0 18 0.08 1:0.05:2

† :Agt is a discrete set range from 1 to 2 with the step value 0.05. 

 
Table A-II The maximal demand at the load  10 in one month, hour 11-12 

t D10t
max 

MWh 
t D10t

max 
MWh 

t D10t
max 

MWh 
t D10t

max

MWh
t D10t

max 
MWh 

t D10t
max

MWh
t D10t

max

MWh
1 134.5 6 129.3 11 125.3 16 124.2 21 131.6 26 118.7 31 119.1 
2 136.7 7 128.8 12 139.2 17 106.8 22 129.5 27 126.9   
3 120.9 8 130.6 13 131.2 18 112.3 23 126.5 28 141.9   
4 129.4 9 125.5 14 129.1 19 127.6 24 101.8 29 142.9   
5 135.6 10 103.2 15 125 20 129.2 25 106.6 30 143.4   

 
Table A-III  The optimal action ,a1t

*,derived from the numeric tests for the single 
agent  simulation case  

t a1t
* t a1t

* t a1t
* t a1t

* t a1t
* t a1t

* t a1t
*

1 1.6 6 1.6 11 1.6 16 1.6 21 1.6 26 1.55 31 1.55
2 1.6 7 1.6 12 1.55 17 1.55 22 1.6 27 1.6   
3 1.55 8 1.6 13 1.6 18 1.55 23 1.6 28 1.55   
4 1.6 9 1.6 14 1.6 19 1.6 24 1.4 29 1.55   
5 1.6 10 1.45 15 1.6 20 1.6 25 1.55 30 1.55   
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